# Assessment of Dynamic Collapse of Container Ship Subjected to Whipping

**Developed by:** Nwe Nwe Soe

Supervisors:Dr.-Ing. Thomas Lindemann, University of RostockDipl.-Ing. Ionel Darie, DNV GL SE, Hamburg

**Rostock, February 2018** 



# Motivation

- ➢ Most of the accidents due to whipping load
  - Container ships
  - *MOL Comfort, Napoli, MSC Carla*
- Recent accident of MOL Comfort

Universität Rostock

more interest of whipping effect on the hull girder loadings



MOL Comfort Accident [https://goo.gl//velqiC]

# Objectives

To access the ultimate strength of 14000 TEU container ship

- □ To investigate the influence of material strain rate
- □ To investigate the effect of whipping load on hull girder capacity strength



# Introduction

Ultimate strength check  $\implies$  DNV GL class guideline (code-0153)

$$\Upsilon_{S}M_{SW} + M_{WV} \left(\Upsilon_{W} + (\Upsilon_{WH} - \Upsilon_{W})\Upsilon_{dU}\right) \le M_{U}/\Upsilon_{R}$$



 $\Upsilon_{dU}$  = partial safety factor reducing the whipping effect during collapse Whipping  $\implies$  transient hydro elastic ship structural response due to impulsive loading

→ by Large bow flare angle, high ship speed, low draft with flat bottom

→ structural failure of hull girder



### Collapse Modes of Container Ships



Normalized Stress Range in Time Domain (Full Scale Measurement, DNV GL)





### Solvers

Static Analysis  $\longrightarrow$  Implicit Solver [LS-DYNA]  $K u(t) = F_{ext}(t) - F_{int}(t)$ 

Dynamic Analysis  $\implies$  Explicit Solver [LS-DYNA]  $M \ddot{u} (t) = F_{ext}(t) - F_{int}(t) - C \dot{u} (t)$ 

Dynamic Analysis Different times [0.1 sec, 1 sec, 2 sec, 5 sec, 10 sec]

- Without strain rate imposed by Cowper-Symonds constants
- With strain rate imposed by Cowper-Symonds constants

Traditio et Innovatio Assessment of Dynamic Collapse of Container Ship Subjected to Whipping

# **Cowper-Symonds Relation**

Universität Rostock

Cowper-Symonds Equation:

$$\sigma' = \sigma_{y} \left[ 1 + \left(\frac{\dot{\varepsilon}}{c}\right)^{\frac{1}{p}} \right]$$

 $\begin{array}{ll} \sigma'_{y} & = dynamic \ yield \ stress, \\ \sigma_{o_{j}}\sigma_{y} & = initial \ yield \ stress, \\ \dot{\varepsilon} & = material \ strain \ rate, \end{array}$ 

C and p = Cowper-Symonds Constants



#### **Behavior of Strain Rate(Experiments)**

|                                     | Value of C              |                                                                                            | value of p |              |
|-------------------------------------|-------------------------|--------------------------------------------------------------------------------------------|------------|--------------|
| <b>Researchers' Name</b>            | Mild High Tensile Steel |                                                                                            | Mild       | High Tensile |
|                                     | steel                   |                                                                                            | steel      | Steel        |
| Paik                                | 40.4                    | 3200                                                                                       |            | 5            |
| Lim(2005)                           | 40                      | 24086                                                                                      |            | 5            |
| Lim(2005)<br>[for different steels] | 92000×exp               | $(\frac{\sigma o}{364})$ -193779 for $\sigma_0 > 271 MPa$<br>40 for $\sigma_0 \le 271 MPa$ |            | 5            |

#### **Nwe Nwe Soe**

Advanced Design



### Analyzed Models and Conditions

| <b>Analyzed</b> | Type of Steels     | Initial Yield              | Analyzed Conditions |                                          |                                       |  |  |
|-----------------|--------------------|----------------------------|---------------------|------------------------------------------|---------------------------------------|--|--|
| WIOUEI          | Useu ili Mouel     | Strength of<br>Steel [MPa] | Static              | Dynamic Condition<br>without Strain Rate | Dynamic Condition<br>with Strain Rate |  |  |
| Stiffened Panel | Mild Steel         | 245                        | Yes                 | Yes                                      | Yes                                   |  |  |
|                 | High Tensile Steel | 315                        | Yes                 | Yes                                      | Yes                                   |  |  |
| Double bottom   | High Tensile Steel | 315                        | Yes                 | Yes                                      | Yes                                   |  |  |
|                 | Mixture of Steels  | 235,315,355                | Yes                 | Yes                                      | Yes                                   |  |  |
| Cargo Hold      | Mixture of Steels  | 235,315,355,<br>390 & 460  | Yes                 | Yes                                      | Yes                                   |  |  |

Traditio et Innovatio Assessment of Dynamic Collapse of Container Ship Subjected to Whipping

fixed

2

### Analysis of Stiffened Panel

Universität Rostock

Symmetric boundary condition at 1 & 2

imposed translational displacement

8

Stiffened Panel with Mild Steel Stiffened Panel with High Tensile Steel Impose the Strain Rate with Cowper-Symonds Constants recommended by Lim & Paik



### Dynamic Analysis without Cowper-Symonds Strain rate

**Static Collapse Force = 23.3 MN** 



2.50E+07  $F_{max} \approx 23.3 \text{ MN}$ 2.00E+07 Force in "N" 1.50E+07 1.00E+07 5.00E+06 0.00E+00 2.00 3.00 0.00 1.00 4.00 5.00 **Displacement in "mm"** -0.1 sec

**Static Collapse Force = 29.38 MN** 

#### Force Vs Displacement without Cowper-Symonds Strain Rate [High Tensile Steel]



No significant changes in dynamic collapse compared to static collapse force

9

#### Nwe Nwe Soe



### Dynamic Analysis with Cowper-Symonds Strain rate

|                          | <b>Results with Mild Steel</b> |                | <b>Results with High Tensile Steel</b> |                            |                |                |                            |                |                |
|--------------------------|--------------------------------|----------------|----------------------------------------|----------------------------|----------------|----------------|----------------------------|----------------|----------------|
| Static Collapse Force    | 23.26 MN                       |                | 29.38 MN                               |                            |                |                |                            |                |                |
| <b>Researchers' Name</b> | Lim & Paik                     |                | Lim                                    |                            |                | Paik           |                            |                |                |
| Simulation Time          | Collapse<br>Frequency [Hz]     | Force<br>Ratio | Strain<br>Rate                         | Collapse<br>Frequency [Hz] | Force<br>Ratio | Strain<br>Rate | Collapse<br>Frequency [Hz] | Force<br>Ratio | Strain<br>Rate |
| <b>0.1sec</b>            | 15.38                          | 1.29           | 2,46E-02                               | 14.29                      | 1.08           | 3.75E-02       | 14.29                      | 1.12           | 2.66E-02       |
| 1sec                     | 1.67                           | 1.21           | 2.77E-03                               | 1.54                       | 1.06           | 2.61E-03       | 1.43                       | 1.09           | 2.66E-03       |
| 2sec                     | 0.80                           | 1.19           | 1.26E-03                               | 0.77                       | 1.05           | 1.36E-03       | 0.74                       | 1.08           | 1.32E-03       |
| 3.1sec,2.8 sec,2.8 sec   | 0.54                           | 1.17           | 8.10E-04                               | 0.54                       | 1.05           | 9.22E-04       | 0.54                       | 1.07           | 9.45E-04       |
| 5sec                     | 0.33                           | 1.16           | 5.68E-04                               | 0.31                       | 1.04           | 5.80E-04       | 0.30                       | 1.07           | 5.10E-04       |
| 10sec                    | 0.17                           | 1.14           | 2.66E-04                               | 0.15                       | 1.04           | 2.57E-04       | 0.15                       | 1.06           | 2.54E-04       |

### Validation of Strain Rate

Universität Rostock

Select C & P values recommended by Lim

Detail formulation for all type of ship structural steel
Force increment ratio is less than that using Paik's constants
Strain rate is also valid with the measurement values





Lim\_Stress\_Ratio Vs SR



**Nwe Nwe Soe** 

C

Advanced Design

13/2/2018



### Dynamic Analysis without Cowper-Symonds Strain rate



\_\_\_\_\_0.1sec \_\_\_\_\_1sec \_\_\_\_\_2sec \_\_\_\_\_2.73sec

Universität Rostock

S

Advanced Design



### Dynamic Analysis with Cowper-Symonds Strain rate



----- Lim 0.1sec ----- Lim 1sec ----- Lim 2sec ----- Lim 2.55sec

|                          | Results w<br>High Tensile  | rith<br>e Steel | <b>Results with</b><br><b>Mixture of Steels</b> |                |  |
|--------------------------|----------------------------|-----------------|-------------------------------------------------|----------------|--|
| Static Collapse<br>Force | 290.51 M                   | N               | 295.41 MN                                       |                |  |
| Simulation Time          | Collapse<br>Frequency [Hz] | Force<br>Ratio  | Collapse<br>Frequency [Hz]                      | Force<br>Ratio |  |
| <b>0.1sec</b>            | 13.33                      | 1.08            | 13.33                                           | 1.08           |  |
| 1sec                     | 1.39                       | 1.06            | 1.37                                            | 1.06           |  |
| 2sec                     | 0.70                       | 1.06            | 0.69                                            | 1.05           |  |
| 2.59sec, 2.55sec         | 0.54                       | 1.06            | 0.54                                            | 1.05           |  |
| 5sec                     | 0.28                       | 1.05            | -                                               | -              |  |

#### Nwe Nwe Soe



### Comparison of the results of Double Bottom Model at 0.54 Hz



#### > Without Whipping

Mixture of Steels 2% greater than High Tensile Steel

#### With Whipping

Mixture of Steels 2% greater than High Tensile Steel

#### Mixture of Steels

With whipping 5% greater than without whipping

### High Tensile Steel

With whipping 6% greater than without whipping



### Analysis of Cargo Hold Model

- Static Analysis
- Dynamic Analysis with Cowper-Symonds Strain Rate
  - Used Cowper-Symonds Constants recommended by Lim

| Materials in Model                      | Cowper-Symonds<br>Constants |   |  |
|-----------------------------------------|-----------------------------|---|--|
| Initial Yield Strength of<br>Steel[MPa] | С                           | р |  |
| 235                                     | 40                          | 5 |  |
| 315                                     | 24806                       | 5 |  |
| 355                                     | 50195                       | 5 |  |
| 390                                     | 74819                       | 5 |  |
| 460                                     | 131774                      | 5 |  |





### Dynamic Analysis of Cargo Hold Model

|            |          |           | Dynamic  |        |          |              |
|------------|----------|-----------|----------|--------|----------|--------------|
|            | Collapse | Collapse  | Collapse |        |          | Rotational   |
| Simulation | Time     | Frequency | Moment   | Moment | Strain   | Displacement |
| Time       | [sec]    | [Hz]      | [GNm]    | Ratio  | Rate     | [radian]     |
| 1 sec      | 0.54     | 1.86      | 24.21    | 1.08   | 1.83E-02 | 0.0054       |
| 3 sec      | 1.68     | 0.59      | 23.84    | 1.07   | 5.03E-03 | 0.0053       |

# Static Collapse Moment = 22.38 GNm

13/2/2018

#### Moment Vs Rotational Displacement



#### Desired Collapse Frequency of 0.54 Hz

#### Nwe Nwe Soe



**Nwe Nwe Soe** 

Load(Static)

Strength(Static)

**UF** (Static)[**UF**=load/strength][w/o whipping]

### Hull Girder Ultimate Strength Check(14000 TEU Container Ship)

**Moment Vs Rotational Displacement** 3.00E+07  $\Upsilon_{dII} = 0.9 (DNV GL)$  $\Upsilon_{dII} = 0.93$  (Analysis) "kNm" 2.50E+07 7% 2.00E+07 1.50E+07 1.00E+07 5.00E+06 e.g.  $M_{sw} = 8.5$  GNm and  $M_{wv} = 8$  GNm 0.00E+00 **DNV GL** Analysis Unit 3.00E-03 0.00E+00 1.00E-03 2.00E-03 4.00E-03 5.00E-03 6.00E-03 **Rotational Displacement in "rad"** GNm Load (with whipping) 19.54 19.59 -Without Whipping Load[Cargo Hold Model] - With Whipping Load [Explicit] GNm 19.74 19.74 **Strength(with whipping)** 0.992 UF (with whipping)[UF=load/strength] 0.990

GNm

GNm

18.10

18.53

0.977



### Conclusion and Recommendation

At Collapse Frequency of 0.54 Hz

|                      | Increment of Ultimate Strength Capacity due to whipping load including Strain Rate Effect |                    |                   |  |  |  |  |
|----------------------|-------------------------------------------------------------------------------------------|--------------------|-------------------|--|--|--|--|
| Analysed Model       | Mild steel                                                                                | High Tensile Steel | Mixture of Steels |  |  |  |  |
| Stiffened Panel      | 17%                                                                                       | 5%                 | -                 |  |  |  |  |
| <b>Double Bottom</b> | -                                                                                         | 6%                 | 5%                |  |  |  |  |
| <b>Cargo Hold</b>    | -                                                                                         | -                  | 7%                |  |  |  |  |

Ultimate Strength Capacity increases up to 7 % (10 % by DNV GL)

□ Simulation Time in LS-DYNA → a few days (sometimes, a few weeks)

□ Need some implementation of FE Model



# **Thank You For Your Attention**

